25 - Unveiling Polymorphs and Polytypes of the 2D Layered Semiconducting Gallium Monosulfide
Advanced Optical Materials (2024) https://onlinelibrary.wiley.com/doi/10.1002/adom.202303002 |
24 - Stability of Nanometer-Thick Layered Gallium Chalcogenides and Improvements via Hydrogen Passivation
ACS Applied Nano Materials (2023) https://doi.org/10.1021/acsanm.3c03899doi.org/10.1021/acsanm.3c03899 |
23 - Layered Gallium Monosulfide as Phase-Change Material for Reconfigurable Nanophotonic Components On-Chip
Advanced Optical Materials (2023) https://doi.org/10.1002/adom.202301564 |
22 - Directional Scattering Switching from an All-Dielectric Phase Change Metasurface
Nanomaterials (2023) https://doi.org/10.3390/nano13030496 |
21 - Characterizing optical phase-change materials with spectroscopic ellipsometry and polarimetry
Thin Solid Films (2022) https://doi.org/10.1016/j.tsf.2022.139580 |
20 - Plasmonic hot-electron reconfigurable photodetector based on phase-change material Sb2S3
Optics Express (2022) https://doi.org/10.1364/OE.468917 |
19 - Reversible and non-volatile metal-to-insulator chemical transition in molybdenum oxide films
Optical Materials Express (2022) https://doi.org/10.1364/OME.465578 |
18 - Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films
Optics Express (2022) https://doi.org/10.1364/OE.459815 |
17 - Interlaboratory study on Sb2S3 interplay betweenstructure, dielectric function, and amorphous-to-crystalline phase change for photonics
iScience (2022) https://doi.org/10.1016/ j.isci.2022.10437 |
16 - Polarimetry analysis and optical contrast of Sb2S3 phase change material
Optical Materials Express (2022) https://doi.org/10.1364/OME.450781 |
15 - Interplay between Thickness, Defects, Optical Properties, and Photoconductivity at the Centimeter Scale in Layered GaS
Nanomaterials 12(3), 465 (2022) https://doi.org/10.3390/nano12030465 |
14 - Exploring the Thickness-Dependence of the Properties of Layered Gallium Sulfide
Frontiers in Chemistry (2021) https://doi.org/10.3389/fchem.2021.781467 |
13 - Chemically Bath Deposited Sb2S3 Films as Optical Phase Change Materials
CAS Proceedings (2021) https://doi.org/10.1109/CAS52836.2021.9604155 |
12 - Quick and Reliable Colorimetric Reflectometry for Thickness Determination of Low Dimensional GaS Exfoliated Layers by Optical Microscopy
Optical Materials Express (2021) https://doi.org/10.1364/OME.435157 |
11 - Design of Switchable On/Off Subpixels for Primary Color Generation Based on Molybdenum Oxide Gratings
Physics (2021) https://doi.org/10.3390/physics3030038 |
10 - CDDA: extension and analysis of the discrete dipole approximation for chiral systems
Optics Express Vol. 29, Num. 19 (2021) https://doi.org/10.1364/OE.434061 |
9 - Plasmonics: Enabling functionalities with novel materials
J. Appl. Phys. 129, 220401 (2021) https://doi.org/10.1063/5.0056296 |
8 - Dynamic reflective color pixels based on molybdenum oxide
Optics Express (2021) https://doi.org/10.1364/OE.424763 |
7 - Plasmonic Nanoantennas Unveiling Multiple Knetics of Hydrogen Sensing, Storage and Spilover
Advanced Materials 2100500 (2021) https://doi.org/10.1002/adma.202100500 |
6 - Imaging ellipsometry for structured and plasmonic materials
J. Appl. Phys. 129, 113101 (2021) https://doi.org/10.1063/5.0039150 |
5 - Chalcogenide phase-change devices for neuromorphic photonic computing
J. Appl. Phys. 129, 151103 (2021) https://doi.org/10.1063/5.0042549 |
4 - Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance
Journal of Applied Physics 128, 080901 (2020) https://doi.org/10.1063/5.0020752 |
3 - Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene
Nanophotonics | Volume 9: Issue 14 (2020) https://doi.org/10.1515/nanoph-2020-0314 |
2 - Gallium chiral nanoshaping for circular polarization handling
Mater. Horiz., 2021, https://doi.org/10.1039/D0MH01078B |
1 - Non-Absorbing Dielectric Materials for Surface-Enhanced Spectroscopies and Chiral Sensing in the UV
Nanomaterials 2020, 10(10), 2078 https://doi.org/10.3390/nano10102078 |