• Home
  • GAME
  • PROJECT
    • CONCEPT
    • OBJECTIVES
    • WORK PACKAGES
  • CONSORTIUM
    • Young Research Team
  • ACHIEVEMENTS
    • PUBLICATIONS
    • RESULTS
    • OPEN DATA
    • DEVICE & PROTOTYPES
  • NEWS & CALLS
    • NEWS
    • EVENTS
    • JOB OFFERS
    • PUBLIC DOCUMENTS
  • TRAINING
  • PRIVATE AREA
  • CONTACT
PHEMTRONICS
  • Home
  • GAME
  • PROJECT
    • CONCEPT
    • OBJECTIVES
    • WORK PACKAGES
  • CONSORTIUM
    • Young Research Team
  • ACHIEVEMENTS
    • PUBLICATIONS
    • RESULTS
    • OPEN DATA
    • DEVICE & PROTOTYPES
  • NEWS & CALLS
    • NEWS
    • EVENTS
    • JOB OFFERS
    • PUBLIC DOCUMENTS
  • TRAINING
  • PRIVATE AREA
  • CONTACT

PUBLICATIONS

Picture
25 - Unveiling Polymorphs and Polytypes of the 2D Layered Semiconducting Gallium Monosulfide
Advanced Optical Materials (2024)
https://onlinelibrary.wiley.com/doi/10.1002/adom.202303002

Picture
24 - Stability of Nanometer-Thick Layered Gallium Chalcogenides and Improvements via Hydrogen Passivation
ACS Applied Nano Materials (2023)
https://doi.org/10.1021/acsanm.3c03899doi.org/10.1021/acsanm.3c03899
Picture
23 - Layered Gallium Monosulfide as Phase-Change Material for Reconfigurable Nanophotonic Components On-Chip
Advanced Optical Materials (2023)
https://doi.org/10.1002/adom.202301564


Picture
22 - Directional Scattering Switching from an All-Dielectric Phase Change Metasurface
Nanomaterials (2023)
https://doi.org/10.3390/nano13030496
Picture
21 - Characterizing optical phase-change materials with spectroscopic ellipsometry and polarimetry
Thin Solid Films (2022)
https://doi.org/10.1016/j.tsf.2022.139580
Picture
20 - Plasmonic hot-electron reconfigurable photodetector based on phase-change material Sb2S3
Optics Express (2022)
https://doi.org/10.1364/OE.468917
Picture
19 - Reversible and non-volatile metal-to-insulator chemical transition in molybdenum oxide films
Optical Materials Express (2022)
https://doi.org/10.1364/OME.465578
Picture
18 - Layered gallium sulfide optical properties from monolayer to CVD crystalline thin films
Optics Express (2022)
https://doi.org/10.1364/OE.459815
Picture
17 - Interlaboratory study on Sb2S3 interplay betweenstructure, dielectric function, and amorphous-to-crystalline phase change for photonics
iScience (2022)
https://doi.org/10.1016/ j.isci.2022.10437
Picture
16 - Polarimetry analysis and optical contrast of Sb2S3 phase change material
Optical Materials Express (2022)
https://doi.org/10.1364/OME.450781
Picture
15 - Interplay between Thickness, Defects, Optical Properties, and Photoconductivity at the Centimeter Scale in Layered GaS
Nanomaterials 12(3), 465 (2022)
https://doi.org/10.3390/nano12030465
Picture
14 - Exploring the Thickness-Dependence of the Properties of Layered Gallium Sulfide
Frontiers in Chemistry (2021)
https://doi.org/10.3389/fchem.2021.781467
Picture
13 - Chemically Bath Deposited Sb2S3 Films as Optical Phase Change Materials
CAS Proceedings (2021)
https://doi.org/10.1109/CAS52836.2021.9604155
Picture
12 - Quick and Reliable Colorimetric Reflectometry for Thickness Determination of Low Dimensional GaS Exfoliated Layers by Optical Microscopy
Optical Materials Express (2021)
https://doi.org/10.1364/OME.435157
Picture
11 - Design of Switchable On/Off Subpixels for Primary Color Generation Based on Molybdenum Oxide Gratings
Physics (2021)
https://doi.org/10.3390/physics3030038
Picture
10 - CDDA: extension and analysis of the discrete dipole approximation for chiral systems
Optics Express Vol. 29, Num. 19 (2021)
https://doi.org/10.1364/OE.434061



Picture
9 - Plasmonics: Enabling functionalities with novel materials
J. Appl. Phys. 129, 220401 (2021)
https://doi.org/10.1063/5.0056296

Picture
8 - Dynamic reflective color pixels based on molybdenum oxide
Optics Express (2021)
https://doi.org/10.1364/OE.424763

Picture
7 - Plasmonic Nanoantennas Unveiling Multiple Knetics of Hydrogen Sensing, Storage and Spilover
 Advanced Materials 2100500 (2021)
https://doi.org/10.1002/adma.202100500
Picture
6 - Imaging ellipsometry for structured and plasmonic materials
J. Appl. Phys. 129, 113101 (2021)
https://doi.org/10.1063/5.0039150


Picture
5 - Chalcogenide phase-change devices for neuromorphic photonic computing
J. Appl. Phys. 129, 151103 (2021)
https://doi.org/10.1063/5.0042549
Picture
4 - Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance 
Journal of Applied Physics 128, 080901 (2020)
https://doi.org/10.1063/5.0020752
Picture
3 - Polymorphic gallium for active resonance tuning in photonic nanostructures: from bulk gallium to two-dimensional (2D) gallenene
Nanophotonics | Volume 9: Issue 14 (2020)
https://doi.org/10.1515/nanoph-2020-0314 
Picture
2 - Gallium chiral nanoshaping for circular polarization handling
Mater. Horiz., 2021,
https://doi.org/10.1039/D0MH01078B
Picture
1 - Non-Absorbing Dielectric Materials for Surface-Enhanced Spectroscopies and Chiral Sensing in the UV
Nanomaterials 2020, 10(10), 2078 
https://doi.org/10.3390/nano10102078
Legal aspect
​Phemtronics© 2020 
All rights reserved
  • Home
  • GAME
  • PROJECT
    • CONCEPT
    • OBJECTIVES
    • WORK PACKAGES
  • CONSORTIUM
    • Young Research Team
  • ACHIEVEMENTS
    • PUBLICATIONS
    • RESULTS
    • OPEN DATA
    • DEVICE & PROTOTYPES
  • NEWS & CALLS
    • NEWS
    • EVENTS
    • JOB OFFERS
    • PUBLIC DOCUMENTS
  • TRAINING
  • PRIVATE AREA
  • CONTACT